Hard, Soft, and Sticky Spheres for Dynamical Studies of Disordered Colloidal Packings

نویسنده

  • Matthew Daniel Gratale
چکیده

HARD, SOFT, AND STICKY SPHERES FOR DYNAMICAL STUDIES OF DISORDERED COLLOIDAL PACKINGS Matthew Daniel Gratale Arjun G. Yodh This thesis describes experiments which explore the role of interparticle interactions as a means to alter, and control, the properties of dense colloidal packings. The first set of experiments studied phonon modes in two-dimensional colloidal crystals composed of soft microgel particles with hard polystyrene particle dopants distributed randomly on the triangular lattice. By mixing hard and soft spheres we obtain close-packed lattices of spheres with random bond strength disorder, i.e., the effective springs coupling nearest-neighbors are either very stiff, very soft, or of intermediate stiffness. Video microscopy, particle tracking, and covariance matrix techniques are employed to derive the phonon modes of the corresponding “shadow” crystals, thereby enabling us to study how bond strength disorder affects vibrational properties. Hard and soft particles participate equally in low frequency phonon modes, and the samples exhibit Debye-like density of states behavior characteristic of crystals at low frequency. For midand high-frequency phonons, the relative participation of hard versus soft particles in each mode is found to vary systematically with dopant concentration.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Densest columnar structures of hard spheres from sequential deposition.

The rich variety of densest columnar structures of identical hard spheres inside a cylinder can surprisingly be constructed from a simple and computationally fast sequential deposition of cylinder-touching spheres, if the cylinder-to-sphere diameter ratio is D is an element of [1,2.7013]. This provides a direction for theoretically deriving all these densest structures and for constructing such...

متن کامل

Diagnosing hyperuniformity in two-dimensional, disordered, jammed packings of soft spheres.

Hyperuniformity characterizes a state of matter for which (scaled) density fluctuations diminish towards zero at the largest length scales. However, the task of determining whether or not an image of an experimental system is hyperuniform is experimentally challenging due to finite-resolution, noise, and sample-size effects that influence characterization measurements. Here we explore these iss...

متن کامل

Packing fraction of trimodal spheres with small size ratio: an analytical expression.

In previous papers analytical expressions were derived and validated for the packing fraction of bimodal hard spheres with small size ratio, applicable to ordered (crystalline) [H. J. H. Brouwers, Phys. Rev. E 76, 041304 (2007);H. J. H. Brouwers, Phys. Rev. E 78, 011303 (2008)] and disordered (random) packings [H. J. H. Brouwers, Phys. Rev. E 87, 032202 (2013)]. In the present paper the underly...

متن کامل

Structure and dynamics of model colloidal clusters with short-range attractions.

We examine the structure and dynamics of small isolated N-particle clusters interacting via short-ranged Morse potentials. "Ideally prepared ensembles" obtained via exact enumeration studies of sticky hard-sphere packings serve as reference states allowing us to identify key statistical-geometrical properties and to quantitatively characterize how nonequilibrium ensembles prepared by thermal qu...

متن کامل

Helical packings and phase transformations of soft spheres in cylinders.

The phase behavior of helical packings of thermoresponsive microspheres inside glass capillaries is studied as a function of the volume fraction. Stable packings with long-range orientational order appear to evolve abruptly to disordered states as the particle volume fraction is reduced, consistent with recent hard-sphere simulations. We quantify this transition using correlations and susceptib...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017